Steering Control of an Autonomous Ground Vehicle with Application to the DARPA

نویسنده

  • John Leonard
چکیده

Fundamental to the design of an Ackerman steered autonomous ground vehicle is the development of a low-level controller that effectively performs trajectory or path tracking. Though ample literature is available on various methods for controlling ground vehicles, little information is presented on the implementation and tuning of such controllers. Moreover, few sources extend ground vehicle control to driving in reverse. This work presents a novel approach to the implementation of the traditional "pure pursuit" style controller in which a dynamic vehicle model is used to map from the path curvature specified by the pure pursuit algorithm to the vehicle's actual steering angle. Additionally, an analytical methodology using a linear model of straight-line path following is used to tune the pure pursuit look-ahead distance. This pure pursuit controller is then contrasted with a simulation-based controller that uses a kinematic model to predict the vehicle's response to a series of different steering inputs; a performance metric is used to select the best command given these predictions. Successful trajectory control results are presented at speeds up to 22 mph. The second focus of this work is the control of a front-wheel steered vehicle driving in reverse. Novel to this work is the presentation of pure pursuit as a stable solution to this problem. Pure pursuit is then contrasted with the mechanism-based controller that was developed by Patwardhan et al. at the University of California Berkeley. In presenting this controller, a new method employing a linear kinematic vehicle model is used to tune the controller parameters. It is then shown that, under specific conditions, the mechanism-based controller and the pure pursuit controller are identical. Both controllers are then compared with the simulation-based controller adapted for driving in reverse. Results are presented at speeds up to 6.7 mph. Results for the implementation of these controllers were collected using a 2006 Land Rover LR3 developed for MIT's entry into the 2007 DARPA Urban Challenge. Results ultimately illustrate the respective strengths and weaknesses of the pure pursuit class of controllers. Thesis Co-supervisor: Karl lagnemma Title: Principal Research Scientist Thesis Co-supervisor: John Leonard Title: Professor of Mechanical and Ocean Engineering

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steering Control of the Autonomous Vehicle: CajunBot

This paper describes the steering controller of the CajunBot II, an autonomous vehicle designed for the DARPA Urban Challenge. The autonomous vehicle is a modified Jeep Wrangler Rubicon equipped with INS/GPS for localization, three sets of sensors and three single board computers. The control objective is to make the lateral error at a certain point ahead of the vehicle zero. The distance of th...

متن کامل

Modeling and Optimal Control of 4 Wheel Steering Vehicle Using LQR and its Comparison with 2 Wheel Steering Vehicle

In this paper, kinetic and kinematic modeling of a 4 wheel steering vehicle is done and its movement is controlled in an optimal way using Linear Quadratic Regulator (LQR). The results are compared with the same control of two-wheel steering case and the advantages are analyzed. In 4 wheel steering vehicles which are nowadays more applicable the number of controlling actuators are more than the...

متن کامل

Control Laws Design and Validation of Autonomous Mobile Robot Off-Road Trajectory Tracking Based on ADAMS and MATLAB Co-Simulation Platform

Autonomous automobile technology is a rapidly developing field, with interest in both academia and industry. Outdoor navigation of autonomous vehicles, especially for roughterrain driving, has already been a new research focus. DARPA Grand Challenge and LAGR program stand for the top development level in this research region. Rough-terrain driving research offers a challenge that the in-vehicle...

متن کامل

Electric Differential for an Electric Vehicle with Four Independent Driven Motors and Four Wheels Steering Ability Using Improved Fictitious Master Synchronization Strategy

Using an Electric Differential (ED) in electric vehicle has many advantages such as flexibility and direct torque control of the wheels during cornering and risky maneuvers. Despite its reported successes and advantages, the ED has several problems limits its applicability, for instance, an increment of control loops and an increase of computational effort. In this paper, an electric differenti...

متن کامل

The Optimal Steering Control System using Imperialist Competitive Algorithm on Vehicles with Steer-by-Wire System

Steer-by-wire is the electrical steering systems on vehicles that are expected with the development of an optimal control system can improve the dynamic performance of the vehicle. This paper aims to optimize the control systems, namely Fuzzy Logic Control (FLC) and the Proportional, Integral and Derivative (PID) control on the vehicle steering system using Imperialist Competitive Algorithm (IC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008